吴强, 邓定文. 一维非线性耦合波动方程组的显式差分格式[J]. 南昌航空大学学报(自然科学版), 2020, 34(3): 34-39. DOI: 10.3969/j.issn.2096-8566.2020.03.005
引用本文: 吴强, 邓定文. 一维非线性耦合波动方程组的显式差分格式[J]. 南昌航空大学学报(自然科学版), 2020, 34(3): 34-39. DOI: 10.3969/j.issn.2096-8566.2020.03.005
Qiang WU, Deng-wen DENG. The Explicit Difference scheme for One-dimensional Nonlinear Coupled Wave Equations[J]. Journal of nanchang hangkong university(Natural science edition), 2020, 34(3): 34-39. DOI: 10.3969/j.issn.2096-8566.2020.03.005
Citation: Qiang WU, Deng-wen DENG. The Explicit Difference scheme for One-dimensional Nonlinear Coupled Wave Equations[J]. Journal of nanchang hangkong university(Natural science edition), 2020, 34(3): 34-39. DOI: 10.3969/j.issn.2096-8566.2020.03.005

一维非线性耦合波动方程组的显式差分格式

The Explicit Difference scheme for One-dimensional Nonlinear Coupled Wave Equations

  • 摘要: 通过运用显式差分格式对一维非线性耦合波动方程组进行数值模拟计算,并用能量分析法进行了收敛性分析,证明了它在无穷范数意义下,具有 O\left( \tau ^2 + h^2 \right) 的收敛阶。利用Richardson外推法,获得了 O\left( \tau ^4 + h^4 \right) 的外推解。最后,数值结果验证了由该显式差分法算得的数值解在时、空方向上均有二阶收敛率;它具有耗时少和计算简便等优势。该研究成果对非线性耦合波动组的高性能数值算法及其理论研究具有借鉴意义。

     

    Abstract: In this paper, the explicit difference scheme is used to numerically calculate the one-dimensional nonlinear coupled wave equations, and the energy analysis method is used to analyze the convergence. It is proved that it has a convergence order of O\left( \tau ^2 + h^2 \right) in maximum norm. Using Richardson extrapolation method, extrapolation solutions with an order of O\left( \tau ^4 + h^4 \right) in L^\infty -norm are obtained. Finally, numerical results confirm numerical solutions obtained by our explicit difference scheme are convergent with an order of two in both time and space; this method own some advantages, such as, low time cost, simple implementation. Our findings possess guiding significance for the development and theoretical analyses of high-performance algorithms used to solve nonlinear coupled wave equations.

     

/

返回文章
返回