戴维凯, 张胜, 吴峰, 蓝文祥. 嵌入空间的复杂网络关联维数研究[J]. 南昌航空大学学报(自然科学版), 2020, 34(3): 25-33. DOI: 10.3969/j.issn.2096-8566.2020.03.004
引用本文: 戴维凯, 张胜, 吴峰, 蓝文祥. 嵌入空间的复杂网络关联维数研究[J]. 南昌航空大学学报(自然科学版), 2020, 34(3): 25-33. DOI: 10.3969/j.issn.2096-8566.2020.03.004
Wei-kai DAI, Sheng ZHANG, Feng WU, Wen-xiang LAN. Research on Correlation Dimension of Complex Network Embedded in Space[J]. Journal of nanchang hangkong university(Natural science edition), 2020, 34(3): 25-33. DOI: 10.3969/j.issn.2096-8566.2020.03.004
Citation: Wei-kai DAI, Sheng ZHANG, Feng WU, Wen-xiang LAN. Research on Correlation Dimension of Complex Network Embedded in Space[J]. Journal of nanchang hangkong university(Natural science edition), 2020, 34(3): 25-33. DOI: 10.3969/j.issn.2096-8566.2020.03.004

嵌入空间的复杂网络关联维数研究

Research on Correlation Dimension of Complex Network Embedded in Space

  • 摘要: 关联维数是定量分析复杂网络分形特性的一种重要指标。现有的关联维数方法在嵌入空间后通过节点的遍历随机游走来重构高维的节点向量,游走过程仅考虑邻居节点,导致重构的向量中元素之间包含了相似的节点信息,这并不利于恢复系统的动力学特性。针对这一问题提出了一种新的复杂网络关联维方法,将混沌理论中嵌入空间的延迟时间概念引入复杂网络,扩大游走对象的距离,降低了节点向量内元素之间的相关性。同时定义了在非欧氏空间的复杂网络关联和,解决了现有方法在传统度量空间不能直接使用的问题。通过3个具有分形维数的网络进行分析,结果表明了该方法在分析动力系统维数时是有效的,比原方法计算的维数更容易趋向真实值。

     

    Abstract: The correlation dimension is an important indicator for quantitatively analyzing the fractal properties of complex networks. In the existing correlation dimension method, the high-dimensional node vectors will be reconstructed by ergodic random walks when the network embedded in Euclidean space. The walking process only considers neighbors and causes the node vectors to contain more similar node information, which is not conducive to recovery dynamic characteristics of complex systems. To solve this problem, a new correlation dimension method for complex networks is proposed. The concept of delay time of embedded space in chaos theory is introduced into complex networks to increase the distance of traveling objects and reduce the correlation between nodes in the node vector. And we define the complex network correlation sum in non-Euclidean space, which makes correlation dimension method can be directly used in the traditional metric space. We validate the method from three networks with fractal dimensions. The results show that the method is effective in estimating the dimensions of the dynamic system, and the dimensions tend to the true correlation dimension values.

     

/

返回文章
返回