史册, 周琳霞, 鲁宇明. 基于量子搜索和高斯变异的MOEA/D算法[J]. 南昌航空大学学报(自然科学版), 2020, 34(2): 15-22. DOI: 10.3969/j.issn.2096-8566.2020.02.003
引用本文: 史册, 周琳霞, 鲁宇明. 基于量子搜索和高斯变异的MOEA/D算法[J]. 南昌航空大学学报(自然科学版), 2020, 34(2): 15-22. DOI: 10.3969/j.issn.2096-8566.2020.02.003
Ce SHI, Lin-xia ZHOU, Yu-ming LU. MOEA/D algorithm Based on Quantum Search and Gaussian Mutation[J]. Journal of nanchang hangkong university(Natural science edition), 2020, 34(2): 15-22. DOI: 10.3969/j.issn.2096-8566.2020.02.003
Citation: Ce SHI, Lin-xia ZHOU, Yu-ming LU. MOEA/D algorithm Based on Quantum Search and Gaussian Mutation[J]. Journal of nanchang hangkong university(Natural science edition), 2020, 34(2): 15-22. DOI: 10.3969/j.issn.2096-8566.2020.02.003

基于量子搜索和高斯变异的MOEA/D算法

MOEA/D algorithm Based on Quantum Search and Gaussian Mutation

  • 摘要: 在实际应用中,尤其是在研究大规模决策空间的优化问题时,MOEA/D算法容易陷入局部最优。针对此问题,提出了一种基于量子搜索和高斯变异的MOEA/D算法。引入环境迁移模型,将两者进行并联,并且与原算法进行串联,利用量子搜索来提升算法的全局搜索能力,采用高斯变异位置更新方法保证算法的局部搜索能力。同时为了避免算法在迭代后期陷入“早熟”危险,提出了基于邻居位置的量子搜索,通过改变吸引点的生成方式,来加强量子搜索在迭代后期的局部搜索能力。结果表明:改进后的MOEA/D算法与原算法相比,提升了算法的搜索能力,也保证了算法的收敛能力。

     

    Abstract: In practical application, especially in the study of large-scale decision space optimization, it is a usual problem that MOEA/D algorithm will fall into local optimization easily. To solve it, a new type of MOEA/D algorithm, which is based on quantum search and Gaussian mutation, is proposed. The quantum search and Gaussian mutation are connected in parallel by means of the environment transfer model introduced. And then the original type of algorithm is connected in series. The quantum search is used to improve the comprehensive search ability of the algorithm, and the Gauss mutation position update method is used to ensure the partial search ability of the algorithm. Meanwhile a quantum search based on neighbor position is proposed to avoid the risk of “precocity” in the later iteration. By changing the generation mode of attraction points, the partial search ability of quantum search in the later iteration is enhanced. The experimental results prove that the improved MOEA/D algorithm, comparing with the original one, has developed the search ability and ensured the convergence ability.

     

/

返回文章
返回