李志农, 吴伟校. 基于2DPCA的金属断口图像识别方法研究[J]. 南昌航空大学学报(自然科学版), 2019, 33(1): 48-52. DOI: 10.3969/j.issn.1001-4926.2019.01.008
引用本文: 李志农, 吴伟校. 基于2DPCA的金属断口图像识别方法研究[J]. 南昌航空大学学报(自然科学版), 2019, 33(1): 48-52. DOI: 10.3969/j.issn.1001-4926.2019.01.008
Zhi-Nong LI, Wei-Xiao WU. Image Recognition Method of Metal Fracture Based on 2DPCA[J]. Journal of nanchang hangkong university(Natural science edition), 2019, 33(1): 48-52. DOI: 10.3969/j.issn.1001-4926.2019.01.008
Citation: Zhi-Nong LI, Wei-Xiao WU. Image Recognition Method of Metal Fracture Based on 2DPCA[J]. Journal of nanchang hangkong university(Natural science edition), 2019, 33(1): 48-52. DOI: 10.3969/j.issn.1001-4926.2019.01.008

基于2DPCA的金属断口图像识别方法研究

Image Recognition Method of Metal Fracture Based on 2DPCA

  • 摘要: 针对PCA在金属断口图像处理中容易引发的维数灾难问题,提出了一种基于2DPCA的金属断口图像识别方法研究。在提出的方法中,2DPCA以最大化类间散度为准则,其协方差矩阵由原始图像矩阵直接构造。同时将提出的方法与基于PCA识别方法相比较。由实验结果可知:本文提出的识别方法计算量小且识别率也高于PCA识别方法。另外,选取合适的特征空间维数十分重要。当选取特征空间维数过小时,图像信息不完善,识别率低,而当特征空间维数过大时,图像信息冗余,计算量会加大。

     

    Abstract: Based on the dimension disaster caused by PCA in the image processing of metal fracture, a recognition method of metal fracture images based on 2DPCA is proposed. In the proposed method, 2DPCA is based on maximizing inter-class divergence, and its covariance matrix is directly constructed from the original image matrix. At the same time, the proposed method is compared with the PCA recognition method. The experimental results show that the proposed recognition method is less computable and the higher recognition rate than the PCA recognition method. In addition, it is very important to choose the suitable feature space dimension. When the feature space dimension is too small, the image information is imperfect and the recognition rate is low. When the feature space dimension is too large, the image information is redundant and the calculation amount is increased.

     

/

返回文章
返回