张桂梅, 陈子恒. 基于自适应分数阶微分的SIFT图像配准[J]. 南昌航空大学学报(自然科学版), 2018, 32(4): 1-8. DOI: 10.3969/j.issn.1001-4926.2018.04.001
引用本文: 张桂梅, 陈子恒. 基于自适应分数阶微分的SIFT图像配准[J]. 南昌航空大学学报(自然科学版), 2018, 32(4): 1-8. DOI: 10.3969/j.issn.1001-4926.2018.04.001
ZHANG Gui-mei, CHEN Zi-heng. Image Registration Based on Adaptive Fractional Differential SIFT[J]. Journal of nanchang hangkong university(Natural science edition), 2018, 32(4): 1-8. DOI: 10.3969/j.issn.1001-4926.2018.04.001
Citation: ZHANG Gui-mei, CHEN Zi-heng. Image Registration Based on Adaptive Fractional Differential SIFT[J]. Journal of nanchang hangkong university(Natural science edition), 2018, 32(4): 1-8. DOI: 10.3969/j.issn.1001-4926.2018.04.001

基于自适应分数阶微分的SIFT图像配准

Image Registration Based on Adaptive Fractional Differential SIFT

  • 摘要: 针对传统SIFT(Scale Invariant Feature Transform)配准算法中存在的特征点正确匹配率低,配准效果较差的问题,提出了一种新的自适应分数阶SIFT算法用于图像配准。首先根据图像的梯度模值和信息熵构建自适应分数阶的数学模型,自动计算每个像素点的最佳分数阶阶次;其次基于最佳分数阶阶次构造自适应分数阶微分掩模,并将其融入到SIFT算法中,提取到更多精确有效的关键点,从而提高了SIFT算法的精度;在SIFT算法的特征点匹配阶段,进行相似性度量时,增加了余弦相似性约束,解决了欧式距离不能够判定特征向量的空间位置关系的问题,进一步提高特征点匹配的准确率;并使用改进的随机样本一致性算法(Random Sample Consensus,RANSAC)进一步减少误匹配的特征点对;最后根据匹配的特征点对求解空间变换矩阵,从而实现图像配准。验证结果证明:本文算法的匹配精度较高,配准的质量也得到较明显的提升。

     

    Abstract: Aiming at the problem that the correct matching rate of feature points in traditional SIFT (Scale Invariant Feature Transform) registration algorithm is low and the effect of registration is poor, a new adaptive fractional order SIFT algorithm is proposed for image registration. The algorithm first constructs an adaptive fractional-order mathematical model based on the gradient modulus and information entropy of the image, and automatically calculates the best fractional order of each pixel. Secondly, constructs an adaptive fractional differential mask based on the optimal fractional order. And integrate it into the SIFT algorithm to extract more precise and effective key points, thus improving the precision of the SIFT algorithm; In the feature point matching stage of SIFT algorithm, the cosine similarity constraint is added when the similarity measure is performed, which solves the problem that the Euclidean distance cannot determine the spatial positional relationship of the feature vector, and further improves the accuracy of feature point matching. The improved random sample consistency algorithm (RANSAC) is used to further reduce the mismatched feature point pairs. Finally, according to the matching features point pairs calculate the spatial transformation matrix to achieve image registration. The verification results show that the matching accuracy of the algorithm is higher and the quality of registration is also improved significantly.

     

/

返回文章
返回