梁珊, 刘晓波. 基于交叉熵代价函数的DBN转子系统故障识别分析[J]. 南昌航空大学学报(自然科学版), 2018, 32(3): 1-7. DOI: 10.3969/j.issn.1001-4926.2018.03.001
引用本文: 梁珊, 刘晓波. 基于交叉熵代价函数的DBN转子系统故障识别分析[J]. 南昌航空大学学报(自然科学版), 2018, 32(3): 1-7. DOI: 10.3969/j.issn.1001-4926.2018.03.001
LIANG Shan, LIU Xiao-bo. Fault Identification Analysis of DBN Rotor System Based on Cross Entropy Cost Function[J]. Journal of nanchang hangkong university(Natural science edition), 2018, 32(3): 1-7. DOI: 10.3969/j.issn.1001-4926.2018.03.001
Citation: LIANG Shan, LIU Xiao-bo. Fault Identification Analysis of DBN Rotor System Based on Cross Entropy Cost Function[J]. Journal of nanchang hangkong university(Natural science edition), 2018, 32(3): 1-7. DOI: 10.3969/j.issn.1001-4926.2018.03.001

基于交叉熵代价函数的DBN转子系统故障识别分析

Fault Identification Analysis of DBN Rotor System Based on Cross Entropy Cost Function

  • 摘要: 针对传统转子系统故障诊断方法在处理复杂故障数据时存在收敛速度慢和识别精度低问题,提出一种基于交叉熵代价函数的深度置信网络(DBN)故障识别方法。其采用无监督算法初始化限制性玻尔兹曼机(RBM)的参数空间,交叉熵代价函数反向传递误差,优化参数空间,逐层堆叠重置后RBM构建深层模型;利用已有数据建立转子系统智能识别库;在MNISIT手写数字集和转子系统故障数据集上验证,与传统DBN相比,利用交叉熵惩罚函数的深度置信网络可消除由于激活函数本身梯度对参数空间更新速度的影响,能有效地提高分类的精度。

     

    Abstract: A Deep Belief Network(DBN) fault identification method based on cross-entropy cost function is proposed to solve the problems of slow convergence rate and low recognition accuracy in traditional rotor system fault diagnosis. Unsupervised algorithm is used to initialize parameter space of Restricted Boltzmann Machine(RBM), cross-entropy cost function is used to transfer errors in the opposite direction and optimize parameter space, and the deep model of RBM is built after layer-by-layer stack resetting. The intelligent identification database of rotor system is established by using the existing data. MNISI hand-written digital set and rotor system fault data set are used for verification, compared with the traditional DBN, Deep Belief Network based on cross-entropy cost function can eliminate the influence of the gradient of the activation function on the updating speed of the parameter space, and improve the accuracy of the classification effectively.

     

/

返回文章
返回