刘炳集, 熊邦书, 欧巧凤, 陈新云. 基于时频图和CNN的滚动轴承故障诊断[J]. 南昌航空大学学报(自然科学版), 2018, 32(2): 86-91. DOI: 10.3969/j.issn.1001-4926.2018.02.013
引用本文: 刘炳集, 熊邦书, 欧巧凤, 陈新云. 基于时频图和CNN的滚动轴承故障诊断[J]. 南昌航空大学学报(自然科学版), 2018, 32(2): 86-91. DOI: 10.3969/j.issn.1001-4926.2018.02.013
LIU Bing-ji, XIONG Bang-shu, OU Qiao-feng, CHEN Xin-yun. Fault Diagnosis of Rolling Bearing Based on Time-frequency Representations and CNN[J]. Journal of nanchang hangkong university(Natural science edition), 2018, 32(2): 86-91. DOI: 10.3969/j.issn.1001-4926.2018.02.013
Citation: LIU Bing-ji, XIONG Bang-shu, OU Qiao-feng, CHEN Xin-yun. Fault Diagnosis of Rolling Bearing Based on Time-frequency Representations and CNN[J]. Journal of nanchang hangkong university(Natural science edition), 2018, 32(2): 86-91. DOI: 10.3969/j.issn.1001-4926.2018.02.013

基于时频图和CNN的滚动轴承故障诊断

Fault Diagnosis of Rolling Bearing Based on Time-frequency Representations and CNN

  • 摘要: 针对传统轴承故障诊断方法泛化能力差,提出了一种基于时频图和卷积神经网络(CNN)的滚动轴承故障诊断方法。首先,对振动信号进行短时傅里叶变换,构造时频图;然后,将训练信号的时频图作为卷积神经网络的输入,训练网络模型;最后,将测试信号的时频图输入网络模型,实现对滚动轴承的故障状态识别。通过美国凯斯西储大学的开放数据集进行多组验证实验,结果表明该方法能够有效的判断轴承是否存在故障,并且能够识别故障类型,准确率可以达到97.63%以上。

     

    Abstract: As for the poor generalization of the traditional diagnosis method of rolling bearing, this paper proposes a fault diagnosis method of rolling bearing based on time-frequency representations and CNN. Firstly, the vibration signals are converted into short-time Fourier transform to construct the time-frequency feature maps. Then, the time-frequency representations of the training data are used as the inputs of the Convolutional Neural Network to train the network model. Finally, the time-frequency representations of the test data are input to the network model so as to identify the fault situation of rolling bearing. Multiple sets of validation experiments were carried out with the open dataset at Case Western Reserve University. The results show that this method can effectively determine whether the bearing is faulty and identify the classification of fault, and the accuracy rate can reach more than 97.63%.

     

/

返回文章
返回