葛利跃, 朱令令, 张聪炫, 陈震. 深度图像优化分层分割的3D场景流估计[J]. 南昌航空大学学报(自然科学版), 2018, 32(2): 17-25. DOI: 10.3969/j.issn.1001-4926.2018.02.003
引用本文: 葛利跃, 朱令令, 张聪炫, 陈震. 深度图像优化分层分割的3D场景流估计[J]. 南昌航空大学学报(自然科学版), 2018, 32(2): 17-25. DOI: 10.3969/j.issn.1001-4926.2018.02.003
GE Li-yue, ZHU Ling-ling, ZHANG Cong-xuan, CHEN Zhen. RGBD Image Sequences Scene Flow Estimation of Auto Layer and Segmentation Optimize[J]. Journal of nanchang hangkong university(Natural science edition), 2018, 32(2): 17-25. DOI: 10.3969/j.issn.1001-4926.2018.02.003
Citation: GE Li-yue, ZHU Ling-ling, ZHANG Cong-xuan, CHEN Zhen. RGBD Image Sequences Scene Flow Estimation of Auto Layer and Segmentation Optimize[J]. Journal of nanchang hangkong university(Natural science edition), 2018, 32(2): 17-25. DOI: 10.3969/j.issn.1001-4926.2018.02.003

深度图像优化分层分割的3D场景流估计

RGBD Image Sequences Scene Flow Estimation of Auto Layer and Segmentation Optimize

  • 摘要: 针对现有基于RGBD数据的3D场景流估计方法,在复杂背景、弱刚性运动以及运动遮挡等情况下计算精度与鲁棒性较低的缺点,提出一种基于深度图像优化分层分割的3D场景流估计方法。首先,利用连续图像序列帧间光流信息对场景深度图像进行优化分层分割,提取图像中运动目标与背景的深度信息。然后,根据深度图像分层结果,利用坐标下降法并结合图像分层技术计算RGBD序列3D场景流。最后,分别采用RGBD、Middlebury以及SRSF等测试图像集对方法的深度图像分层和场景流估计的准确性与可靠性进行综合对比试验。实验结果表明:所提方法针对复杂场景、弱刚性运动以及运动遮挡等类型图像具有较高的场景流估计精度与鲁棒性。

     

    Abstract: For the accuracy and robustness of the existing scene flow estimation models toward to the complex background, weak-rigid motion and motion occlusion, this paper proposed a 3D scene flow computing method based on the optimized layering and segmentation of depth image. Firstly, the depth information of the moving objects and background in the image sequence are acquired by using the initial optical flow to optimize the layering and segmentation of the depth image. Secondly, the scene flow is iteratively computed by employing the coordinate descent method based on the result of depth layering. Finally, the test image sequences of RGBD, Middlebury and SRSF databases are chosen to evaluate the accuracy and reliability of the depth layering and scene flow estimation of the proposed method. The comparison results indicate that the proposed method has the better accuracy and robustness for scene flow computing under the complex background, weak-rigid motion and motion occlusion.

     

/

返回文章
返回