罗杰, 曾接贤, 冷璐, 符祥. 基于改进的区域候选网络的行人检测[J]. 南昌航空大学学报(自然科学版), 2018, 32(2): 1-7,43. DOI: 10.3969/j.issn.1001-4926.2018.02.001
引用本文: 罗杰, 曾接贤, 冷璐, 符祥. 基于改进的区域候选网络的行人检测[J]. 南昌航空大学学报(自然科学版), 2018, 32(2): 1-7,43. DOI: 10.3969/j.issn.1001-4926.2018.02.001
LUO Jie, ZENG Jie-xian, LEN Lu, FU Xiang. Pedestrian detection based on improved Region Proposal Network[J]. Journal of nanchang hangkong university(Natural science edition), 2018, 32(2): 1-7,43. DOI: 10.3969/j.issn.1001-4926.2018.02.001
Citation: LUO Jie, ZENG Jie-xian, LEN Lu, FU Xiang. Pedestrian detection based on improved Region Proposal Network[J]. Journal of nanchang hangkong university(Natural science edition), 2018, 32(2): 1-7,43. DOI: 10.3969/j.issn.1001-4926.2018.02.001

基于改进的区域候选网络的行人检测

Pedestrian detection based on improved Region Proposal Network

  • 摘要: 通过Caltech数据集训练区域候选网络时,发现其在场景复杂情况下存在大量的漏检和误检。经分析:一是区域候选网络使用VGG网络提取待检测图片特征,由于VGG网络层数较少,提取的特征不能够很好地表达行人;二是锚边框的尺度通过手工设计,没有利用到行人的尺度先验信息。针对以上2个问题,提出了一种改进的区域候选网络的行人检测方法,首先通过使用分类能力更强的ResNet提取待检测图片特征,然后利用检测小网络在卷积特征图上滑动,预测多个锚边框区域是否是行人并对锚边框位置和尺度进行修正,其中锚边框尺度通过KMeans算法计算得到。结果表明:本文算法在Caltech数据集上,比传统的VJ和HOG方法漏检率分别低36.23%、27.09%,比基于深度学习的方法PedFaster RCNN、MRFC+Semantic和UDN+漏检率分别低6.78%、3.73%、1.53%。研究表明本文改进的区域候选网络能够较好的检测行人。

     

    Abstract: In complex scene, there are a lot of pedestrians who are not properly detected by the region proposal network model,which is trained with Caltech dataset. Firstly, the feature extracted by VGG model in region proposal network can’t represent pedestrian information well. Secondly, hand-crafted sizes of the anchor box don’t use the annotation information of pedestrians. In this paper, we proposed an improved pedestrian detection method of regional proposal networks to address the problems. We extracted the feature of the image by using the ResNet which have a better performance on the classification task. Then use the detection sub-network sliding on the feature map to predict whether multiple anchor boxes are pedestrian and adjust their position and size, especially the anchor boxes’ size are calculated by KMeans algorithm. The experimental show that, compared with the traditional VJ and HOG methods, the algorithm’s missed detection rate are 36.23% and 27.09% lower on Caltech dataset. Moreover, the algorithm’s missed detection rate are also 6.78%, 3.73%, 1.53% lower than PedFaster RCNN, MRFC+Semantic, and UDN+ based on the deep learning method. The results show that the improved regional candidate network can be used to detect pedestrians well.

     

/

返回文章
返回