李娟, 邹维林. 一类非线性退化抛物方程有界弱解的存在性[J]. 南昌航空大学学报(自然科学版), 2016, 30(3): 18-22. DOI: 10.3969/j.issn.1001-4926.2016.03.004
引用本文: 李娟, 邹维林. 一类非线性退化抛物方程有界弱解的存在性[J]. 南昌航空大学学报(自然科学版), 2016, 30(3): 18-22. DOI: 10.3969/j.issn.1001-4926.2016.03.004
LI Juan, ZOU Wei-lin. Existence of Bounded Weak Solutions for a Class of Nonlinear Degenerate Parabolic Equations[J]. Journal of nanchang hangkong university(Natural science edition), 2016, 30(3): 18-22. DOI: 10.3969/j.issn.1001-4926.2016.03.004
Citation: LI Juan, ZOU Wei-lin. Existence of Bounded Weak Solutions for a Class of Nonlinear Degenerate Parabolic Equations[J]. Journal of nanchang hangkong university(Natural science edition), 2016, 30(3): 18-22. DOI: 10.3969/j.issn.1001-4926.2016.03.004

一类非线性退化抛物方程有界弱解的存在性

Existence of Bounded Weak Solutions for a Class of Nonlinear Degenerate Parabolic Equations

  • 摘要: 本文主要研究一类非线性退化抛物型方程,其中主算子在解为无穷大时退化非强制,即当解u趋于无穷时,扩散现象消失。利用先验估计方法和经典的紧性理论,得到了解的L估计,并由此证明了有界弱解的存在性。

     

    Abstract: This paper deals with a class of nonlinear degenerate parabolic equations whose main operators goes to zero as the solution tends to infinity,when the solution of u tends to infinity, the diffusion phenomenon disappears. Using a priori estimation method and classical compactness theory, we obtain the L estimates for the solutions, and then prove the existence of bounded weak solutions to such problems.

     

/

返回文章
返回