储珺, 成俊, 张桂梅. 基于Fisher vector的人体部件行人检测[J]. 南昌航空大学学报(自然科学版), 2016, 30(2): 79-86. DOI: 10.3969/j.issn.1001-4926.2016.02.013
引用本文: 储珺, 成俊, 张桂梅. 基于Fisher vector的人体部件行人检测[J]. 南昌航空大学学报(自然科学版), 2016, 30(2): 79-86. DOI: 10.3969/j.issn.1001-4926.2016.02.013
CHU Jun, CHENG Jun, ZHANG Gui-mei. Pedestrian Detection Based on Fisher Vector and Human Body Parts[J]. Journal of nanchang hangkong university(Natural science edition), 2016, 30(2): 79-86. DOI: 10.3969/j.issn.1001-4926.2016.02.013
Citation: CHU Jun, CHENG Jun, ZHANG Gui-mei. Pedestrian Detection Based on Fisher Vector and Human Body Parts[J]. Journal of nanchang hangkong university(Natural science edition), 2016, 30(2): 79-86. DOI: 10.3969/j.issn.1001-4926.2016.02.013

基于Fisher vector的人体部件行人检测

Pedestrian Detection Based on Fisher Vector and Human Body Parts

  • 摘要: 针对传统行人检测中使用行人全局特征表示能力不足以及遮挡行人检测率较低的问题,本文提出了基于Fisher vector的人体部件行人检测算法。算法用Fisher vector来量化人体部件的HOG特征,并用支持向量机学习训练得到人体整体分类器和部件分类器;然后用Hough投票对整体分类器和部件分类器的分类结果进行投票,得分最高者代表行人位置;最后用非极大值抑制消除虚警。通过在标准行人库上进行试验,并和当前常用行人检测算法做对比。实验结果表明,本文提出的方法对复杂场景中的多尺度行人检测及行人遮挡检测、具有较好的准确性和鲁棒性。

     

    Abstract: In view of the traditional pedestrian detection which use single global feature whose expression ability is insufficient and keep out the pedestrian detection rate is low, we propose pedestrian detection algorithm in this paper based on the Fisher vector and the body parts model. Algorithm with Fisher vector quantify the HOG features of human body parts, and support vector machine (SVM) to learning for integral human body classifier and part body classifier. Then we use Hough vote on integral classifier and the classification of the part body classifiers to vote results, the highest score represents. Finally, we use Non-Maximum Suppression to eliminate false alarm. Through the testing in the standard pedestrian database and comparing to the current popular pedestrian detection algorithm, the experimental results show that the proposed method of multi-scale pedestrian detection in complex scene and pedestrian occlusion detection has good accuracy and robustness.

     

/

返回文章
返回