谢建强. 一维粘性波动方程的三层紧致差分格式[J]. 南昌航空大学学报(自然科学版), 2016, 30(2): 50-53,86. DOI: 10.3969/j.issn.1001-4926.2016.02.008
引用本文: 谢建强. 一维粘性波动方程的三层紧致差分格式[J]. 南昌航空大学学报(自然科学版), 2016, 30(2): 50-53,86. DOI: 10.3969/j.issn.1001-4926.2016.02.008
XIE Jian-qiang. A Three Level Compact Difference Scheme for Solving a One-dimensional Viscous Wave Equation[J]. Journal of nanchang hangkong university(Natural science edition), 2016, 30(2): 50-53,86. DOI: 10.3969/j.issn.1001-4926.2016.02.008
Citation: XIE Jian-qiang. A Three Level Compact Difference Scheme for Solving a One-dimensional Viscous Wave Equation[J]. Journal of nanchang hangkong university(Natural science edition), 2016, 30(2): 50-53,86. DOI: 10.3969/j.issn.1001-4926.2016.02.008

一维粘性波动方程的三层紧致差分格式

A Three Level Compact Difference Scheme for Solving a One-dimensional Viscous Wave Equation

  • 摘要: 对一维粘性波动方程,构造一个三层紧致差分格式,并利用能量法进行误差分析,证明差分格式在最大范数意义下有Oτ2+h4)的收敛阶。利用Richardson外推法,得到Oτ4+h4)的外推解。最后,给出数值算例,验证了该差分格式的收敛阶和有效性。

     

    Abstract: A three level compact finite difference scheme for solving a one-dimensional viscous wave equation is derived. Using the energy method for error analysis, it is proved that the difference solution converges to exact solution with a convergence order of O(τ2+h4) in the maximum norm. Moreover, the Richardson extrapolation method is utilized to make the final solution fourth-order accurate in both time and space. Finally, a numerical example is provided to verify the convergence order and validity of the difference scheme.

     

/

返回文章
返回