李来平, 喻吉良, 张如, 郑欣, 王峰. 多相Nb-Si-Fe-Ti-Al-W原位复合材料高温变形行为[J]. 南昌航空大学学报(自然科学版), 2015, 29(4): 57-61. DOI: 10.3969/j.issn.1001-4926.2015.04.011
引用本文: 李来平, 喻吉良, 张如, 郑欣, 王峰. 多相Nb-Si-Fe-Ti-Al-W原位复合材料高温变形行为[J]. 南昌航空大学学报(自然科学版), 2015, 29(4): 57-61. DOI: 10.3969/j.issn.1001-4926.2015.04.011
LI Lai-ping, YU Ji-liang, ZHANG Ru, ZHENG Xin, WANG Feng. Deformation Behavior of Nb-Si-Fe-Ti-Al-W In Situ Composite At Elevated Temperature[J]. Journal of nanchang hangkong university(Natural science edition), 2015, 29(4): 57-61. DOI: 10.3969/j.issn.1001-4926.2015.04.011
Citation: LI Lai-ping, YU Ji-liang, ZHANG Ru, ZHENG Xin, WANG Feng. Deformation Behavior of Nb-Si-Fe-Ti-Al-W In Situ Composite At Elevated Temperature[J]. Journal of nanchang hangkong university(Natural science edition), 2015, 29(4): 57-61. DOI: 10.3969/j.issn.1001-4926.2015.04.011

多相Nb-Si-Fe-Ti-Al-W原位复合材料高温变形行为

Deformation Behavior of Nb-Si-Fe-Ti-Al-W In Situ Composite At Elevated Temperature

  • 摘要: 采用机械合金化(MA)+热压烧结制备了Nb-16Si-5Fe-10Ti-5Al-10W原位复合材料,研究了球磨时间对热压复合材料致密度的影响。结果表明,材料的致密度随着球磨时间的延长而增大;X射线衍射(XRD)分析表明:制备的复合材料由连续分布的铌固溶体 (Nbss) 相、金属间化合物Nb5Si3相和Nb4Fe3Si5相组成。各物相的平均晶粒尺寸为1 μm,并且呈等轴状。采用真空高温拉伸评价了Nb-16Si-5Fe-10Ti-5Al-10W原位复合材料的高温性能。在1 350 ℃以上、应变速率为3.1×10-4 s-1条件下,该复合材料具有极大的塑性或超塑性。晶界滑移是塑性变形的主要机制。在1 300、1 350 ℃该复合材料具有很高的高温强度。

     

    Abstract: A Nb-16Si-5Fe-10Ti-5Al-10W multiphase composite was prepared by mechanical alloying (MA) and hot pressing sintering. Influence of milling time on relative density was studied. The results show the relative density increases with increasing milling time. Analysis of XRD reveals that this composite consists of Nbss(Niobium solid solution), intermetallics Nb5Si3 and Nb4Fe3Si5. The average grain sizes of each phase are all about 1 μm and the grains shapes are nearly equiaxed. The tensile properties of Nb-16Si-5Fe-10Ti-5Al-10W composite at elevated temperature were evaluated by tensile tests in vacuum. This composite displayed extensive plasticity or superplasticity at or above 1 350 ℃ with strain rate of 3.1×10-4 s-1. The main plastic deformation mechanism is grain boundary sliding. This composite exhibited very high tensile strength at 1 300 ℃ and 1 350 ℃.

     

/

返回文章
返回