彭丽娇, 杨海波. 有限群作用下的RO(G)分次上同调理论[J]. 南昌航空大学学报(自然科学版), 2015, 29(3): 49-51,62. DOI: 10.3969/j.issn.1001-4926.2015.03.009
引用本文: 彭丽娇, 杨海波. 有限群作用下的RO(G)分次上同调理论[J]. 南昌航空大学学报(自然科学版), 2015, 29(3): 49-51,62. DOI: 10.3969/j.issn.1001-4926.2015.03.009
PENG Li-jiao, YANG Hai-bo. RO(G)-graded Cohomology Theory with Finite Group Action[J]. Journal of nanchang hangkong university(Natural science edition), 2015, 29(3): 49-51,62. DOI: 10.3969/j.issn.1001-4926.2015.03.009
Citation: PENG Li-jiao, YANG Hai-bo. RO(G)-graded Cohomology Theory with Finite Group Action[J]. Journal of nanchang hangkong university(Natural science edition), 2015, 29(3): 49-51,62. DOI: 10.3969/j.issn.1001-4926.2015.03.009

有限群作用下的RO(G)分次上同调理论

RO(G)-graded Cohomology Theory with Finite Group Action

  • 摘要: 本研究从奇异上同调的同伦理论范畴出发,讨论RO(G)上同调理论,提出在有限群作用下的等变Eilenberg-Mac Lane谱序列,并构造一个等变Eilenberg-Mac Lane谱序列的模型,此模型可将实代数簇的变上同调与Cech上同调相结合,建立实代数簇的Deligne上同调理论。

     

    Abstract: Based on the singular cohomology, RO(G)-graded cohomology theory have been investigated from the homotopy theoretic route, and some results for the trivial group action are obtained.We generalize the results to the finite group action, and define the Eilenberg-Mac Lane spectrum.In addition, we build a model of the Eilenberg-Mac Lane spectrum.By using this model one can build the Deligne cohomology theory on real varieities, which generalizes the equivariant cohomology and Cech cohomology.

     

/

返回文章
返回