毕艳会, 李广津, 张宜浩. 具有n-辛结构的辛几何问题[J]. 南昌航空大学学报(自然科学版), 2014, 28(4): 31-34. DOI: 10.3969/j.issn.1001-4926.2014.04.006
引用本文: 毕艳会, 李广津, 张宜浩. 具有n-辛结构的辛几何问题[J]. 南昌航空大学学报(自然科学版), 2014, 28(4): 31-34. DOI: 10.3969/j.issn.1001-4926.2014.04.006
BI Yan-hui, LI Guang-jin, ZHANG Yi-hao. The Symplectic Geometry Problem with n-plectic Structure[J]. Journal of nanchang hangkong university(Natural science edition), 2014, 28(4): 31-34. DOI: 10.3969/j.issn.1001-4926.2014.04.006
Citation: BI Yan-hui, LI Guang-jin, ZHANG Yi-hao. The Symplectic Geometry Problem with n-plectic Structure[J]. Journal of nanchang hangkong university(Natural science edition), 2014, 28(4): 31-34. DOI: 10.3969/j.issn.1001-4926.2014.04.006

具有n-辛结构的辛几何问题

The Symplectic Geometry Problem with n-plectic Structure

  • 摘要: 在前人研究的基础上,提出了具有-辛结构的辛几何问题。讨论了n-辛流形上的向量场(n-辛向量场,n-哈米顿向量场),并结合李导数的性质,给出了判定向量场为n-辛向量场的2个充分必要条件,得到了2个n-哈米顿向量场在括号积下仍为n-哈米顿向量场的结论。最后通过定义线性映射,得到了相应的短正合序列。

     

    Abstract: The symplectic geometry problem with n-plectic structure is proposed based on previous studies. The vector fields(n-plectic vector field, n-Hamiltonian vector field)on n-plectic manifolds are discussed, and the two necessary and sufficient conditions for n-plectic vector field are given according to the property of Lie derivative, meanwhile, the result that two n-Hamiltonian vector field in integrated bracket is still an n-Hamiltonian vector field is given. Finally, the short exact sequences are obtained by defining linear maps.

     

/

返回文章
返回