邱相, 代冀阳, 蒋沅. 几种降阶方法在柴油机控制器中的应用对比研究[J]. 南昌航空大学学报(自然科学版), 2014, 28(1): 80-84. DOI: 10.3969/j.issn.1001-4926.2014.01.015
引用本文: 邱相, 代冀阳, 蒋沅. 几种降阶方法在柴油机控制器中的应用对比研究[J]. 南昌航空大学学报(自然科学版), 2014, 28(1): 80-84. DOI: 10.3969/j.issn.1001-4926.2014.01.015
QIU Xiang, DAI Ji-yang, JIANG Yuan. Several Reduction Methods of Application Reseach on Diesel Engine Controller[J]. Journal of nanchang hangkong university(Natural science edition), 2014, 28(1): 80-84. DOI: 10.3969/j.issn.1001-4926.2014.01.015
Citation: QIU Xiang, DAI Ji-yang, JIANG Yuan. Several Reduction Methods of Application Reseach on Diesel Engine Controller[J]. Journal of nanchang hangkong university(Natural science edition), 2014, 28(1): 80-84. DOI: 10.3969/j.issn.1001-4926.2014.01.015

几种降阶方法在柴油机控制器中的应用对比研究

Several Reduction Methods of Application Reseach on Diesel Engine Controller

  • 摘要: 为保证军用机、直升机等大型装备的最后装配质量,得到的产品能满足各项性能指标,必须对系统进行分析和计算。但对于大型复杂系统而言,由于其高维数和复杂性,直接分析相对困难,在这种情况下,采用降阶方法处理。本研究分别利用奇异值分解、Krylov子空间理论和最小二乘法对柴油机控制器进行降阶。研究结果表明:奇异值分解(SVD)算法可以根据系统的奇异值大小进行截断,能够保持降阶系统的结构特性,但计算过程较复杂。Krylov子空间的降阶算法虽然计算量小,且速度快,但误差范数较大。利用最小二乘法可以很好地结合这两种方法的优点,从仿真结果也可看出,利用第三种方法结果最好。

     

    Abstract: To ensure the final assembly quality of military aircrafts, helicopters and other large equipment, and the products can meet performance indicators, the systems must be analyzed and calculated. But for the large complex systems, due to their high dimensionality and complexity, it is relative difficulty to analyze directly, and it is good to use reduction method to deal with the problem in this case. The paper is aimed at reduction for diesel engine controller by using Singular Value Decomposition, Krylov subspace theory and the Least Squares method. Through the comparative study,we proved that Singular Value Decomposition (SVD) algorithm can be truncated according to the size of the singular value, and maintain the structural properties of the reduction system, but the calculation process is complex. The calculation of Krylov subspace reduction algorithm is small, but the error norm is large. While using the Least Squares method can be well combined with the advantages of these two methods, from the simulation results we can get the best result when use the third method.

     

/

返回文章
返回