沈高峰, 苏倩, 刘丰华, 蔡长春, 王振军, 徐志锋, 余欢. 连续纤维增强铝基复合材料横向剪切断裂行为的细观力学分析[J]. 南昌航空大学学报(自然科学版), 2020, 34(4): 36-43. DOI: 10.3969/j.issn.2096-8566.2020.04.007
引用本文: 沈高峰, 苏倩, 刘丰华, 蔡长春, 王振军, 徐志锋, 余欢. 连续纤维增强铝基复合材料横向剪切断裂行为的细观力学分析[J]. 南昌航空大学学报(自然科学版), 2020, 34(4): 36-43. DOI: 10.3969/j.issn.2096-8566.2020.04.007
Gao-feng SHEN, Qian SU, Feng-hua LIU, Chang-chun CAI, Zhen-jun WANG, Zhi-feng XU, Huan YU. Micromechanical Analysis of Transverse Shear Fracture Behavior of Continuous Fiber Reinforced Aluminum Matrix Composites[J]. Journal of nanchang hangkong university(Natural science edition), 2020, 34(4): 36-43. DOI: 10.3969/j.issn.2096-8566.2020.04.007
Citation: Gao-feng SHEN, Qian SU, Feng-hua LIU, Chang-chun CAI, Zhen-jun WANG, Zhi-feng XU, Huan YU. Micromechanical Analysis of Transverse Shear Fracture Behavior of Continuous Fiber Reinforced Aluminum Matrix Composites[J]. Journal of nanchang hangkong university(Natural science edition), 2020, 34(4): 36-43. DOI: 10.3969/j.issn.2096-8566.2020.04.007

连续纤维增强铝基复合材料横向剪切断裂行为的细观力学分析

Micromechanical Analysis of Transverse Shear Fracture Behavior of Continuous Fiber Reinforced Aluminum Matrix Composites

  • 摘要: 针对真空压力浸渗法制备的石墨纤维增强铝基复合材料,通过其显微组织特征建立代表性体积单胞,建立考虑基体延性损伤以及界面损伤与失效行为的单胞有限元模型。结果表明:由于单胞有限元模型考虑了复合材料横向剪切变形中界面的实际破坏行为,数值模拟得到的横向剪切弹性模量略低于细观力学公式的计算值;横向剪切过程中首先发生界面损伤并逐渐累积,随着剪切应变增加出现界面的局部破坏,诱发纤维附近基体合金的损伤,在剪切变形的最后阶段,纤维之间基体合金失效区域连通后导致复合材料发生整体破坏;横向剪切载荷作用下,界面脱粘和纤维附近的基体合金失效是引起复合材料断裂失效的主要机制。

     

    Abstract: For the graphite fiber reinforced aluminum matrix composite material prepared by vacuum pressure infiltration method, the representative volume unit cell was established by observing the microstructure characteristics. On this basis, a unit cell finite element model considering the ductile damage of the matrix and the interface damage and failure behavior is established. The research results show that the unit cell finite element model considers the failure behavior of the interface in the transverse shear deformation of the composite material, so the transverse shear elastic modulus obtained by the numerical simulation is slightly lower than the calculated value of the micromechanical formula. The interface damage occurs first and accumulates gradually during the transverse shearing process. As the shear strain increases, local damage to the interface occurs and induces damage to the matrix alloy near the fiber. In the final stage of shear deformation, the failure area of the matrix alloy between the fibers is connected to cause the overall failure of the composite material. Under the action of transverse shear load, interface debonding and matrix alloy failure near the fibers are the main mechanisms that cause the failure of composite materials.

     

/

返回文章
返回