[1] 王中平,孙振平,金明. 表面物理化学[M]. 上海:同济大学出版社,2015.
[2] 李毅,商艳玲,李振华,等. 土壤斥水性研究进展[J]. 农业机械学报,2012,43(1):68–75. doi: 10.6041/j.issn.1000-1298.2012.01.014
[3] Doerr S H,Ferreira A J D,Walsh R P D,et al. Soil water repellency as a potential parameter in rainfall-runoff modeling:experimental evidence at point to catchment scales from portugal [J]. Hydrological Process,2003,17(2):363–377. doi: 10.1002/(ISSN)1099-1085
[4] Feng G L,Letey J,Wu L. Water ponding depths affect temporal infiltration rates in a water-repellent sand [J]. Soil Science Society of America Journal,2001,65(2):315–320.
[5] Thomas G W,Phillips R E. Consequences of water movement in macropores [J]. Journal of Environmental Quality,1979,8:149–152.
[6] Coles N,Trudgill S. The movement of nitrogen fertilizer from the soil surface to drainage waters by preferential flow in weakly structured soils [J]. Agriculture Ecosystems and Environment,1985,13:241–259. doi: 10.1016/0167-8809(85)90014-3
[7] 毛昶熙. 管涌与滤层的研究:管涌部分[J]. 岩土力学,2005,26(2):209–215. doi: 10.3969/j.issn.1000-7598.2005.02.008
[8] 施成华,彭立敏. 基坑开挖及降水引起的地表沉降预测[J]. 土木工程学报,2006,39(5):117–121. doi: 10.3321/j.issn:1000-131X.2006.05.019
[9] 汪益敏,陈页开,韩大建,等. 降雨入渗对边坡稳定影响的实例分析[J]. 岩石力学与工程学报,2004,23(6):920–924. doi: 10.3321/j.issn:1000-6915.2004.06.007
[10] 陈生水,钟启明,陶建基. 土石坝溃决模拟及水流计算研究进展[J]. 水科学进展,2008,19(6):903–910. doi: 10.3321/j.issn:1001-6791.2008.06.022
[11] 杨蕴,吴剑锋,林锦,等. 控制海水入侵的地下水多目标模拟优化管理模型[J]. 水科学进展,2015,26(4):579–588.
[12] 叶为民,金麒,黄雨. 地下水污染试验研究进展[J]. 水利学报,2005,36(2):251–255. doi: 10.3321/j.issn:0559-9350.2005.02.021
[13] Deurer M,Bachmann J. Modeling water movement in heterogeneous water repellent soil:2. A conceptual numerical simulation [J]. Vadose Zone Journal,2007,6(3):446–457.
[14] Bachmann J,Horton R. Isothermal and nonisothermal evaporation from four sandy soils of different water repellency [J]. Soil Science Society of America Journal,2001,65(6):1599–1607.
[15] Ellerbrock R H,Gerke H H,Bachmann J,et al. Composition of organic matter fractions for explaining wettability of three forest soils [J]. Soil Science Society of America Journal,2005,69(1):57–66.
[16] Wallach R,Ben-Arie,Graber E R. Soil water repellency induced by long-term irrigation with treated sewage effluent [J]. Journal of Environmental Quality,2005,34(5):1910–1920.
[17] Arye G,Tarchitzky J,Chen Y. Treated wastewater effects on water repellency and soil hydraulic properties of soil aquifer treatment infiltration basins [J]. Journal of Hydrology,2011,397(1–2):136–145.
[18] Newton P C D,Carran R A,Lawrence E J. Reduced water repellency of a grassland soil under elevated atmospheric CO2 [J]. Global Change Biology,2004,19(1):1–4.
[19] DeBano L F. The role of fire and soil heating on water repellency in wildland enviroments:a review [J]. Journal of Hydrology, 2000,231–232:195–206.
[20] 刘发林,张思玉. 森林火灾对马尾松次生林土壤斥水性的影响[J]. 中南林业科技大学学报,2009,29(4):37–41. doi: 10.3969/j.issn.1673-923X.2009.04.012
[21] 韩钊龙,胡慧蓉,黄铄淇. 林火干扰对土壤理化性质的影响[J]. 西南林业大学学报,2014,34(3):46–50. doi: 10.3969/j.issn.2095-1914.2014.03.009
[22] 刘立超,杨昊天,李新荣,等. 土壤斥水性及其生态水文效应研究进展[J]. 地球科学进展,2011,26(9):926–932.
[23] Dekker L W,Ritsema C J. How water moves in a water repellent sandy soil:1. Potential and actual water repellency [J]. Water Resources Research,1994,30(9):2507–2517.
[24] 吴延磊,李子忠,龚元石. 两种常用方法测定土壤斥水性结果的相关性研究[J]. 农业工程学报,2007,23(7):8–13. doi: 10.3321/j.issn:1002-6819.2007.07.002
[25] Ramirez-Flores J C,Bachmann J,Marmur A. Direct determination of contact angles of model soils in comparison with wettability characterization by capillary rise [J]. Journal of Hydrology,2010,382(1−4):10–19.
[26] Bachmann J,Horton R,Ploeg R R V D,et al. Modified sessile drop method for assessing initial soil-water contact angle of sandy soil [J]. Soil Science Society of America Journal,2000,64(2):564–567.
[27] Carrillo M L K,Letey J,Yates S R. Measurement of initial soil-water contact angle of water repellent soils [J]. Soil Science Society of America Journal,1999,63(3):433–436.
[28] Gilboa A,Bachmann J,Woche S K,et al. Applicability of interfacial theories of surface tension to water-repellent soils [J]. Soil Science Society of America Journal,2006,70(5):1417–1429.
[29] 杨松,黄剑峰,罗茂泉,等. 斥水性砂土水−气形态及其对斥水−亲水转化的影响分析[J]. 农业机械学报,2017,48(11):247–252. doi: 10.6041/j.issn.1000-1298.2017.11.030
[30] Doerr S H,Thomas A D. The role of soil moisture in controlling water repellency:new evidence from forest soils in Portugal [J]. Journal of Hydrology,2000,231–232(22):134–147.
[31] Karnok K A,Rowland E J,Tan K H. High pH treatments and the alleviation of soil hydrophobicity on golf greens [J]. Agronomy Journal,1993,85(5):983–986.
[32] Dekker L W,Ritsema C J,Oostindie K,et al. Effect of drying temperature on the severity of soil water repellency [J]. Soil Science,1998,162(10):780–796.
[33] Dekker L W,Ritsema C J. Wetting patterns and moisture variability in water repellent Dutch soils [J]. Journal of Hydrology, 2000,231−232:148–164.
[34] Micheal J,Noam W. Accumulation of oil and grease in soils irrigated with greywater and their potential role in soil water repellency [J]. Science of theTotal Environment,2008,394(1):68–74.
[35] Taumer K,Stoffregen H,Wessolek G. Determination of repellency distribution using soil organic matter and water content [J]. Geoderma,2005,125(1–2):107–115.
[36] Hurraß J,Schaumann G E. Properties of soil organic matter and aqueous extracts of actually water repellent and wettable soil samples [J]. Geoderma,2006,132(1–2):222–239.
[37] Mataix S J,Arceneguia V,Guerrero C,et al. Can terra rossa become water repellent by burning:A laboratory approach [J]. Geoderma, 2008,147(3–4):178–184.
[38] Franco C M M,Franco P J,Clarke,et al. Hydrophobic properties and chemical characterisation of natural water repellent materials in Australian sands [J]. Journal of Hydrology,2000,231-232(10):47–58.
[39] 王景明,王珂,郑咏梅,等. 荷叶表面纳米结构与浸润性的关系[J]. 高等学校化学学报,2010,31(8):1596–1599.
[40] Lee W,Jin M K,Yoo W C,et al. Nanostructuring of a polymeric substrate with well-defined nanometer scale topography and tailored surface wettability [J]. Langmuir,2004,20(18):7665–7669.
[41] 徐先锋,刘烁,洪龙龙. 非金属超疏水材料的制备方法及研究进展[J]. 中国塑料,2013,27(5):12–18.
[42] 杨松,龚爱民,吴珺华,等. 接触角对非饱和土中基质吸力的影响[J]. 岩土力学,2015,36(3):674–678.
[43] 顾春元,狄勤丰,景步宏,等. 疏水纳米SiO2抑制黏土膨胀机理[J]. 石油学报,2012,33(6):1028–1031.
[44] 刘清秉,项伟,张伟锋,等. 离子土壤固化剂改性膨胀土的试验研究[J]. 岩土力学,2009,30(8):2286–2290. doi: 10.3969/j.issn.1000-7598.2009.08.015
[45] Roper M M. The isolation and characterization of bacteria with the potential to degrade waxes that cause water repellency in sandy soils [J]. Australian Journal of Soil Research,2004,42(4):427–434.
[46] 周芳琴,罗鸿禧. 微生物对某些岩土工程性质的影响[J]. 岩土力学,1997,18(2):17–22.
[47] 胡春香,刘永定,张德禄,等. 荒漠藻结皮的胶结机理[J]. 科学通报,2002,47(12):931–937. doi: 10.3321/j.issn:0023-074X.2002.12.011
[48] 周东,欧孝夺,杜静,等. 生物技术改良膨胀土探讨[J]. 广西大学学报:自然科学版,2004,29(3):197–201.
[49] DeBano L F. The effect of hydrophobic substances on water movement in soil during infiltration [J]. Soil Science Society of America Journal,1971,35(2):340–343.
[50] Wang Z,Wu Q J,Wu L,et al. Effects of soil water repellency on infiltration rate and flow instability [J]. Journal of Hydrology,2000,231−232(41):265–276.
[51] Rodriguez-Alleres M,de Blas E,Benito E. Estimation of soil water repellency of different particle size fractions in relation with carbon content by different methods [J]. Science of th Total Environment,2007,378(1):147–150.
[52] 刘春成,李毅,任鑫,等. 四种入渗模型对斥水土壤入渗规律的适用性[J]. 农业工程学报,2011,27(5):62–67. doi: 10.3969/j.issn.1002-6819.2011.05.010
[53] Hallett P D,Nunan N,Douglas J T,et al. Millimeter-scale spatial variability in soil water sorptivity:scale,surface elevation,and subcritical repellency effects [J]. Soil Science Society of America Journal,2004,68(2):352–358.
[54] 任鑫,李毅,李敏,等. 次生盐渍土垂向剖面斥水性及其与理化性质关系[J]. 农业机械学报,2011,42(3):58–64.
[55] 陈俊英,张智韬,杨飞,等. 土壤的斥水性和含水量变化关系的数学模型[J]. 灌溉排水学报,2009,28(6):35–38.
[56] 李林. 不同斥水程度砂土的土壤水分入渗特性研究[D]. 杨凌:西北农林科技大学,2016.
[57] 刘畅,陈俊英,张林,等. 初始含水率对斥水黏壤土入渗特性的影响[J]. 排灌机械工程学报,2018,36(4):354–361.
[58] 许朝阳,张莉,周健. 微生物改性对粉土某些特性的影响[J]. 土木建筑与环境工程,2009,31(2):80–84.
[59] Harkes M P,van Paassen L A,Booster J L,et al. Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement [J]. Ecological Engineering,2010,36(2):112–117.