周瑞琪,廖为浩,汪棋,等. 基于多传感信息融合和LSTM神经网络的边坡变形预测方法[J]. 失效分析与预防,2025,20(5):399-409. doi: 10.3969/j.issn.1673-6214.2025.05.008
    引用本文: 周瑞琪,廖为浩,汪棋,等. 基于多传感信息融合和LSTM神经网络的边坡变形预测方法[J]. 失效分析与预防,2025,20(5):399-409. doi: 10.3969/j.issn.1673-6214.2025.05.008
    ZHOU Ruiqi,LIAO Weihao,WANG Qi,et al. Slope deformation prediction based on multi-sensing information fusion data and LSTM neural network[J]. Failure analysis and prevention,2025,20(5):399-409. doi: 10.3969/j.issn.1673-6214.2025.05.008
    Citation: ZHOU Ruiqi,LIAO Weihao,WANG Qi,et al. Slope deformation prediction based on multi-sensing information fusion data and LSTM neural network[J]. Failure analysis and prevention,2025,20(5):399-409. doi: 10.3969/j.issn.1673-6214.2025.05.008

    基于多传感信息融合和LSTM神经网络的边坡变形预测方法

    Slope Deformation Prediction Based on Multi-sensing Information Fusion Data and LSTM Neural Network

    • 摘要: 为提升公路运营期间的安全性,准确分析判断公路边坡位移状态和变形趋势十分重要。本文提出一种基于多传感信息融合技术的边坡变形预测方法,首先将测斜仪和全球导航卫星系统(GNSS)对公路某一点位采集到的位移数据进行预处理,去除噪声等干扰;再将处理后的数据进行融合,利用融合数据对搭建的长短期记忆(LSTM)神经网络模型进行训练;然后通过模型预测未来一段时间边坡的变形趋势,实现对边坡位移情况的有效分析与预测。通过将实际监测数据与预测数据进行对比,以验证该边坡变形预测模型的可靠性。结果表明,预测模型能较准确地反映边坡位移的真实情况和趋势,验证了基于多传感信息融合技术与LSTM神经网络的边坡变形预测方法可为公路边坡安全监测和预警提供有力支持,对保障公路运营安全有重大意义。

       

      Abstract: To improve the safety during highway operation, it is crucial to accurately analyze and assess the displacement status and deformation trend of highway slopes. A slope deformation prediction method based on multi-sensor information fusion technology is proposed here. Firstly, displacement data collected by an inclinometer and global navigation satellite system (GNSS) at specific locations on the highway is pre-processed to remove noise and other interference. Subsequently, the processed data are fused and employed for training the long short-term memory (LSTM) neural network model. Then, the trained model is applied to predict the future deformation trend of the slope, enabling effective analysis and prediction of the slope displacement. By comparing actual monitoring data with predicted data, the reliability of the slope deformation prediction model is verified. Corresponding results show that the prediction model can accurately reflect the real situation and trend of slope displacement. This confirms that the slope deformation prediction method based on multi-sensor information fusion technology and LSTM neural network can provide robust support for highway slope safety monitoring and early warning, which is significant for ensuring highway operation safety.

       

    /

    返回文章
    返回