周季冰,燕晨耀,杨慧慧,等. 飞机结构强度试验数据分析算法[J]. 失效分析与预防,2025,20(5):383-390. doi: 10.3969/j.issn.1673-6214.2025.05.006
    引用本文: 周季冰,燕晨耀,杨慧慧,等. 飞机结构强度试验数据分析算法[J]. 失效分析与预防,2025,20(5):383-390. doi: 10.3969/j.issn.1673-6214.2025.05.006
    ZHOU Jibing,YAN Chenyao,YANG Huihui,et al. Analysis algorithm for aircraft structural strength test data[J]. Failure analysis and prevention,2025,20(5):383-390. doi: 10.3969/j.issn.1673-6214.2025.05.006
    Citation: ZHOU Jibing,YAN Chenyao,YANG Huihui,et al. Analysis algorithm for aircraft structural strength test data[J]. Failure analysis and prevention,2025,20(5):383-390. doi: 10.3969/j.issn.1673-6214.2025.05.006

    飞机结构强度试验数据分析算法

    Analysis Algorithm for Aircraft Structural Strength Test Data

    • 摘要: 飞机结构强度试验的测量规模庞大,且试验中常会出现非试验件自身原因引起的无效应变数据,因此要求在试验数据分析时对无效数据及时筛选并剔除,为后续试验分析提供完整且有效的测量数据库,进而提高测量效率。现有的数据分析方法主要依据经验进行人工观察筛选,效率低且易出现疏漏。本文建立飞机结构强度试验数据库,提出一种基于支持向量机及人工神经网络等统计学习方法的数据分析算法流程,并对该算法进行对比验证试验。结果表明:基于统计学习的数据分析算法对于数据分析任务可以得到较为准确的分析结果,可较好完成测量数据初筛工作。使用该算法可有效提高测量数据分析的准确性和效率,为后续海量应变数据自动化处理软件的开发提供理论依据。

       

      Abstract: The measurement scale of aircraft structural strength tests is huge. During the tests, there are often invalid strain data caused by reasons other than the test samples themselves. During test data analysis, it is required to timely screen and eliminate the invalid data to provide a complete and effective measurement database for subsequent test analysis, thereby enhancing the measurement efficiency. However, the existing data analysis methods mainly rely on manual observation and screening based on experience, which is inefficient and prone to omission. This paper establishes a database for aircraft structural strength testing, proposes a data analysis algorithm process based on statistical learning methods, including support vector machines and artificial neural networks, and conducts comparative validation tests on the data analysis algorithms. The results show that the data analysis algorithm based on statistical learning can obtain relatively accurate analysis results for data analysis tasks, and can better complete the preliminary screening of measurement data. This algorithm can effectively improve the accuracy and efficiency of measurement data analysis, providing a theoretical basis for the development of automated processing software for massive strain data in the future.

       

    /

    返回文章
    返回