谯欢,石宇强. 基于VMD与跨模态注意力融合的滚动轴承故障诊断方法[J]. 失效分析与预防,2025,20(5):364-373. doi: 10.3969/j.issn.1673-6214.2025.05.004
    引用本文: 谯欢,石宇强. 基于VMD与跨模态注意力融合的滚动轴承故障诊断方法[J]. 失效分析与预防,2025,20(5):364-373. doi: 10.3969/j.issn.1673-6214.2025.05.004
    QIAO Huan,SHI Yuqiang. Method for fault diagnosis of rolling bearings based on variational mode decomposition and cross-modal attention fusion[J]. Failure analysis and prevention,2025,20(5):364-373. doi: 10.3969/j.issn.1673-6214.2025.05.004
    Citation: QIAO Huan,SHI Yuqiang. Method for fault diagnosis of rolling bearings based on variational mode decomposition and cross-modal attention fusion[J]. Failure analysis and prevention,2025,20(5):364-373. doi: 10.3969/j.issn.1673-6214.2025.05.004

    基于VMD与跨模态注意力融合的滚动轴承故障诊断方法

    Method for Fault Diagnosis of Rolling Bearings Based on Variational Mode Decomposition and Cross-Modal Attention Fusion

    • 摘要: 针对滚动轴承振动信号的非平稳性及传统诊断方法对微弱故障特征提取不足的问题,本文提出一种基于变分模态分解(VMD)与Transformer-BiLSTM-CrossAttention的混合诊断模型。首先,利用VMD对原始振动信号进行自适应分解,提取多尺度本征模态函数(IMF),并结合时域统计特征、频域包络谱能量以及时频小波熵进行多域特征提取;其次,设计一种融合全局时序建模与局部特征交互的深度学习框架:通过Transformer编码器捕捉信号的长程依赖关系,双向长短期记忆网络(BiLSTM)提取双向局部时序特征,并引入交叉注意力机制动态融合两者的输出,增强模型对故障敏感特征的聚焦能力;最后,基于凯斯西储大学轴承数据集进行实验验证。结果表明:在0~3 HP不同负载条件下,本文方法对正常、内圈、外圈及滚动体故障的平均诊断准确率达99.62%。

       

      Abstract: To address the non-stationarity of rolling bearing vibration signals and the limitations of traditional diagnostic methods in extracting weak fault features, this study proposes a hybrid diagnostic model that integrates variational mode decomposition (VMD) with a Transformer-BiLSTM-CrossAttention network. First, VMD is employed to adaptively decompose the raw vibration signals into multi-scale intrinsic mode function (IMF). A multi-domain feature set is then extracted, combining time-domain statistical features, frequency-domain envelope spectrum energy, and time-frequency wavelet entropy. Subsequently, a deep learning framework is designed to fuse global temporal modeling with local feature interaction: a Transformer encoder captures long-range dependencies, a bidirectional long short-term memory (BiLSTM) network extracts bidirectional local temporal features, and a cross-attention mechanism dynamically integrates their outputs to enhance the model’s focus on fault-sensitive characteristics. The model is validated experimentally using the Case Western Reserve University bearing dataset. Results demonstrate that under varying load conditions (0~3 HP), the proposed method achieves an average diagnostic accuracy of 99.61% in classifying normal states, inner race faults, outer race faults, and roller element faults. This approach provides a high-precision and generalizable solution for bearing fault diagnosis under complex operating conditions.

       

    /

    返回文章
    返回