胡诚锐,刘桂珍,苏志豪,等. GFRP-T型接头低速冲击失效分析与铺层优化有限元模拟[J]. 失效分析与预防,2025,20(4):275-280,307. doi: 10.3969/j.issn.1673-6214.2025.04.003
    引用本文: 胡诚锐,刘桂珍,苏志豪,等. GFRP-T型接头低速冲击失效分析与铺层优化有限元模拟[J]. 失效分析与预防,2025,20(4):275-280,307. doi: 10.3969/j.issn.1673-6214.2025.04.003
    HU Chengrui,LIU Guizhen,SU Zhihao,et al. Finite element simulation of low-velocity impact failure analysis and layup optimization for GFRP T-joints[J]. Failure analysis and prevention,2025,20(4):275-280,307. doi: 10.3969/j.issn.1673-6214.2025.04.003
    Citation: HU Chengrui,LIU Guizhen,SU Zhihao,et al. Finite element simulation of low-velocity impact failure analysis and layup optimization for GFRP T-joints[J]. Failure analysis and prevention,2025,20(4):275-280,307. doi: 10.3969/j.issn.1673-6214.2025.04.003

    GFRP-T型接头低速冲击失效分析与铺层优化有限元模拟

    Finite Element Simulation of Low-velocity Impact Failure Analysis and Layup Optimization for GFRP T-joints

    • 摘要: 本研究基于ABAQUS软件建立玻璃纤维增强聚合物(GFRP)复合材料T型接头的低速冲击有限元模型,通过内聚力模型(CZM)模拟界面分层行为,并结合冲击实验验证模型的准确性;通过建立数值模拟与实验测试的双向验证体系,系统分析不同纤维铺层角度对结构损伤演化模式及力学承载性能的影响规律。结果表明:数值模拟与实验的载荷−位移响应曲线及宏观失效形貌吻合良好,误差为6.69%,验证了建模方法的可靠性。当铺层角度为45/−45/0/90/02s时,抗冲击性能最优,其中,±45°层增强抗剪能力并分散冲击能量;0°/90°正交铺层方式可明显提升拉伸和压缩强度,通过协同作用有效抑制能量集中。该研究揭示了纤维铺层结构与冲击损伤机制的映射关系,为复合材料T型接头的抗冲击设计与工程应用提供了理论依据。

       

      Abstract: This study established a finite element model for low-velocity impact analysis of glass fiber-reinforced polymer (GFRP) composite T-joints using ABAQUS. The interfacial delamination behavior was simulated via the Cohesive Zone Model (CZM), and the model’s accuracy was validated through physical impact tests. A bidirectional framework integrating numerical simulation and experimental testing was developed to systematically analyze the influence of fiber layup angles on structural damage evolution and mechanical performance. The results indicate that numerical simulations of load-displacement response curves and macroscopic failure morphologies are in good agreement with those of the experimental data with an error of 6.69%, which verifies the reliability of the multiscale modeling approach. When the layup sequence is 45/45/0/90/02s, the impact resistance performance is optimal. Among them, the ±45° layers enhance the shear resistance and disperse the impact energy; the 0°/90° orthogonal layers can significantly improve the tensile and compressive strength, and effectively suppress energy concentration through synergistic effect. This work elucidates the mapping relationship between the fiber layup configurations and the impact-induced damage mechanisms, providing a theoretical basis for the anti-impact design and engineering application of T-joints in composite materials.

       

    /

    返回文章
    返回