徐朝阳,孟莉. 应变硬化与损伤下的蠕变本构热力学分析[J]. 失效分析与预防,2025,20(3):179-183,223. doi: 10.3969/j.issn.1673-6214.2025.03.002
    引用本文: 徐朝阳,孟莉. 应变硬化与损伤下的蠕变本构热力学分析[J]. 失效分析与预防,2025,20(3):179-183,223. doi: 10.3969/j.issn.1673-6214.2025.03.002
    XU Zhaoyang,MENG Li. Thermodynamic analysis of creep constitutive model integrating strain hardening and damage[J]. Failure analysis and prevention,2025,20(3):179-183,223. doi: 10.3969/j.issn.1673-6214.2025.03.002
    Citation: XU Zhaoyang,MENG Li. Thermodynamic analysis of creep constitutive model integrating strain hardening and damage[J]. Failure analysis and prevention,2025,20(3):179-183,223. doi: 10.3969/j.issn.1673-6214.2025.03.002

    应变硬化与损伤下的蠕变本构热力学分析

    Thermodynamic Analysis of Creep Constitutive Model Integrating Strain Hardening and Damage

    • 摘要: 确保本构方程的热力学自洽性是检验材料蠕变行为的重要标准,这不仅关系到模型的理论严谨性,还直接影响其在工程应用中的可靠性。本文基于能量守恒基本定律,结合力学中熵产非负定律,推导了考虑损伤演化的蠕变本构模型。在模型构建过程中,将材料的总自由能分解为两部分:一部分与蠕变变形和损伤密切相关,用于描述微观缺陷的演化对材料变形硬化以及强度的影响;另一部分是弹塑性变形相关的自由能,反映材料在机械载荷作用下的瞬态响应。该模型能够表征蠕变过程中应力、应变与损伤变量之间的内在联系,并通过引入损伤变量控制方程,实现对材料寿命的合理预测。采用P92合金和1Cr10NiMoW2VNbN合金的高温蠕变实验数据对模型进行验证,结果表明,该模型能够较好地捕捉蠕变应变演化特征,并准确预测不同应力水平下的蠕变寿命,体现了模型在高温结构材料寿命评估中的适用性与有效性。

       

      Abstract: Ensuring thermodynamic self-consistency in constitutive equations is a critical requirement for simulating material creep behavior, as it pertains not only to the theoretical rigor of the model but also directly impacts its reliability in engineering applications. Leveraging the laws of energy conservation and non-negative entropy production, this study develops a thermodynamically consistent creep constitutive model that incorporates damage evolution. The model decomposes the material’s total free energy into two components: one linked to creep deformation and damage, which describes the influence of micro-defect evolution on deformation hardening and strength degradation; and another associated with elastic-plastic deformation, reflecting the transient mechanical response under loading. This framework establishes explicit relationships among stress, strain, and damage variables during creep and enables accurate prediction of material lifespan through damage-controlled evolution equations. Validation against high-temperature creep data for P92 alloy and 1Cr10NiMoW2VNbN alloy demonstrates that the model effectively captures the evolution of creep strain and precisely predicts creep life across varying stress levels. These results underscore the applicability and robustness of the model for lifespan assessment in high-temperature structural materials.

       

    /

    返回文章
    返回