钱尼君,秦智军,刘华龙,等. 基于极端梯度提升算法的钢丝绳拉伸疲劳寿命预测[J]. 失效分析与预防,2025,20(3):169-178. doi: 10.3969/j.issn.1673-6214.2025.03.001
    引用本文: 钱尼君,秦智军,刘华龙,等. 基于极端梯度提升算法的钢丝绳拉伸疲劳寿命预测[J]. 失效分析与预防,2025,20(3):169-178. doi: 10.3969/j.issn.1673-6214.2025.03.001
    QIAN Nijun,QIN Zhijun,LIU Hualong,et al. Tensile fatigue life prediction of steel wire ropes based on extreme gradient boosting algorithm[J]. Failure analysis and prevention,2025,20(3):169-178. doi: 10.3969/j.issn.1673-6214.2025.03.001
    Citation: QIAN Nijun,QIN Zhijun,LIU Hualong,et al. Tensile fatigue life prediction of steel wire ropes based on extreme gradient boosting algorithm[J]. Failure analysis and prevention,2025,20(3):169-178. doi: 10.3969/j.issn.1673-6214.2025.03.001

    基于极端梯度提升算法的钢丝绳拉伸疲劳寿命预测

    Tensile Fatigue Life Prediction of Steel Wire Ropes Based on Extreme Gradient Boosting Algorithm

    • 摘要: 当前钢丝绳疲劳寿命预测的研究受限于试验数据与经验公式,存在显著的局限性与不确定性,难以满足实际应用需求,为此引入基于极端梯度提升(XGBoost)算法的机器学习方法。首先构建包含基本几何特征及关键表面缺陷变量的钢丝绳有限元模型,通过有限元分析,精确模拟其在不同拉伸载荷下的应力分布与变形行为,并在此基础上施加载荷谱,估算疲劳寿命,形成全面数据集,揭示表面缺陷对疲劳寿命的显著影响;然后采用贝叶斯优化的XGBoost算法对数据集进行系统学习与分析,构建快速且准确的钢丝绳拉伸疲劳寿命预测模型。相较于传统机器学习算法如线性回归和随机森林,该模型预测效果更优,决定系数高达0.988 1。研究结果不仅为钢丝绳疲劳寿命预测提供了新方法,也为钢丝绳的安全使用与维护提供了理论支持。

       

      Abstract: Current research on fatigue life prediction of steel wire ropes is constrained by experimental data and empirical formulas, posing significant limitations and uncertainties that impede its practical applications. To address this challenge, this study introduces a machine learning approach based on the extreme gradient boosting (XGBoost) algorithm. Initially, a finite element model of steel wire ropes was developed, incorporating basic geometric features as well as critical surface defect variables. This model enables precise simulation of stress distribution and deformation behavior under various tensile loads. Grounded on this foundation, load spectra were applied to estimate fatigue life, generating a comprehensive dataset that can reveal the profound impact of surface defects on fatigue life. Subsequently, the dataset was systematically analyzed using a Bayesian-optimized XGBoost algorithm, therefore developing a rapid and accurate prediction model for the tensile fatigue life of steel wire ropes. Compared to traditional machine learning algorithms such as linear regression and random forests, this model demonstrates superior prediction performance with a determination coefficient up to 0.988 1. This study not only provides a novel approach for predicting the fatigue life of steel wire ropes but also offers valuable support for their safe use and maintenance, highlighting its significant practical importance.

       

    /

    返回文章
    返回