裘少坤, 刘晓波. Zr3Al三轴拉伸变形的分子动力学模拟[J]. 失效分析与预防, 2024, 19(3): 172-178, 193. DOI: 10.3969/j.issn.1673-6214.2024.03.004
    引用本文: 裘少坤, 刘晓波. Zr3Al三轴拉伸变形的分子动力学模拟[J]. 失效分析与预防, 2024, 19(3): 172-178, 193. DOI: 10.3969/j.issn.1673-6214.2024.03.004
    QIU Shao-kun, LIU Xiao-bo. Molecular Dynamics Simulation on Triaxial Tensile Deformation of Zr3Al[J]. Failure Analysis and Prevention, 2024, 19(3): 172-178, 193. DOI: 10.3969/j.issn.1673-6214.2024.03.004
    Citation: QIU Shao-kun, LIU Xiao-bo. Molecular Dynamics Simulation on Triaxial Tensile Deformation of Zr3Al[J]. Failure Analysis and Prevention, 2024, 19(3): 172-178, 193. DOI: 10.3969/j.issn.1673-6214.2024.03.004

    Zr3Al三轴拉伸变形的分子动力学模拟

    Molecular Dynamics Simulation on Triaxial Tensile Deformation of Zr3Al

    • 摘要: 采用分子动力学模拟研究Zr3Al三轴拉伸的力学行为和位错反应机制,比较分析不同变形温度和变形速率对Zr3Al三轴方向上的应力应变关系及塑性变形行为的影响,为研究Zr3Al力学性能提供理论参考。结果表明:在不同变形温度和不同应变速率下三轴方向上的拉伸变形机理相似;随着温度升高,会降低Zr3Al的应力峰值和降低达到应力峰值时对应的应变量,使其抗拉强度降低,同时会加快变形所诱发的面心立方转变为密排六方结构的相变。在整个变形过程中,产生6种位错类型,主要位错类型是Other和1/6<112>类型位错。在300~1000 K的拉伸变形温度条件下,位错长度均随着变形量的增加先变长后减短,直至相对稳定。相比于1×108、2×108、5×108 s−1拉伸应变速率条件下,在拉伸应变速率为1×109 s−1时,Zr3Al具有更高的抗拉强度。

       

      Abstract: Molecular dynamics simulations were utilized to study the mechanical behavior and dislocation response mechanism of Zr3Al under triaxial stretching. This study compared and analyzed the impact of different deformation temperatures and deformation rates on the stress-strain relationship and plastic deformation behavior of Zr3Al in the triaxial direction for providing theoretical reference for research on Zr3Al. The simulation results show that the tensile deformation mechanisms in the triaxial direction are similar at different deformation temperatures and different strain rates. As the deformation temperature increases, the peak stress decreases, leading to a reduction in the corresponding strain at peak stress in the Zr3Al, thereby lowering its tensile strength. Simultaneously, it will accelerate the deformation-induced phase transition from a face-centered cubic to a hexagonal close-packed structure. Throughout the deformation process, six dislocation types were generated, the predominant dislocation types were Other and 1/6<112> type dislocations. When the tensile deformation temperatures range from 300 K to 1000 K, with the increased deformation amount, the dislocation lengths initially extend and then shorten until become stable. The tensile strength is higher at a strain rate of 1×109 s−1 than those at 1×108, 2×108, 5×108 s−1.

       

    /

    返回文章
    返回