田伟, 张少平, 吴晨, 汪庆. 航空发动机浮动瓦片热障涂层脱落分析[J]. 失效分析与预防, 2023, 18(6): 407-411, 416. DOI: 10.3969/j.issn.1673-6214.2023.06.010
    引用本文: 田伟, 张少平, 吴晨, 汪庆. 航空发动机浮动瓦片热障涂层脱落分析[J]. 失效分析与预防, 2023, 18(6): 407-411, 416. DOI: 10.3969/j.issn.1673-6214.2023.06.010
    TIAN Wei, ZHANG Shao-ping, WU Chen, WANG Qing. Failure Analysis of Thermal Barrier Coating on Aero Engine Floating Tile[J]. Failure Analysis and Prevention, 2023, 18(6): 407-411, 416. DOI: 10.3969/j.issn.1673-6214.2023.06.010
    Citation: TIAN Wei, ZHANG Shao-ping, WU Chen, WANG Qing. Failure Analysis of Thermal Barrier Coating on Aero Engine Floating Tile[J]. Failure Analysis and Prevention, 2023, 18(6): 407-411, 416. DOI: 10.3969/j.issn.1673-6214.2023.06.010

    航空发动机浮动瓦片热障涂层脱落分析

    Failure Analysis of Thermal Barrier Coating on Aero Engine Floating Tile

    • 摘要: 航空发动机火焰筒浮动瓦片采用等离子喷涂Y2O3-ZrO2热障涂层进行防护,发动机试车后部分浮动瓦片的热障涂层局部区域发生脱落。利用体视显微镜、扫描电子显微镜、能谱仪、X射线衍射仪等对发生涂层脱落的浮动瓦片表面形貌、显微组织、微区成分和相组成进行分析。结果表明:热障涂层主要发生Y2O3-ZrO2面层剥落,裂纹萌生于NiCoCrAlY底层未熔颗粒突起部位所形成的热生长氧化层(TGO)附近,并沿平行于界面的方向扩展。陶瓷面层脱落的原因与金属底层厚度偏薄,金属底层含有超量的未熔颗粒及孔隙,陶瓷面层中含有单斜晶系m相有关,从而导致高温下陶瓷面层中应力过大而开裂、剥离。加强涂层组织结构检验并采用纳米结构团聚型面层喷涂粉末,能够改善热障涂层的工作可靠性。

       

      Abstract: The floating tiles of the flame tube of aero-engine are protected by plasma spraying Y2O3-ZrO2 thermal barrier coating. After the engine test run, the thermal barrier coating fell off and failed in some areas of the floating tiles. The surface morphology, microstructure, micro-domain composition and phase composition of the floating tiles with coating peeling off were analyzed by stereo microscope, scanning electron microscope, energy dispersive spectrometer, and X-ray diffractometer. The results show that the Y2O3-ZrO2 top coating is spalled and the NiCoCrAlY coating is remained. The cracks initiated near the thermally grown oxides that was formed by the unmelted particle protrusions of the NiCoCrAlY bottom layer, and propagated along the direction parallel to the interface. The reason for the detachment of ceramic surface layer was related the excessive amount of unmelted particles and pores in the thin metal bottom layer, and the presence of monoclinic m-phase in the ceramic surface layer. The excessive stress resulted in the ceramic surface layer cracking and peeling in at high temperatures. Strengthening the inspection of the microstructure of the coating and using the nanostructure agglomerated coating powder can improve the working reliability of the thermal barrier coating.

       

    /

    返回文章
    返回