刘志强, 龚廷恺. 基于改进形态学的滚动轴承故障诊断研究[J]. 失效分析与预防, 2022, 17(6): 362-367. DOI: 10.3969/j.issn.1673-6214.2022.06.002
    引用本文: 刘志强, 龚廷恺. 基于改进形态学的滚动轴承故障诊断研究[J]. 失效分析与预防, 2022, 17(6): 362-367. DOI: 10.3969/j.issn.1673-6214.2022.06.002
    LIU Zhi-qiang, GONG Ting-kai. Fault Diagnosis of Rolling Bearing Based on Improved Mathematical Morphology[J]. Failure Analysis and Prevention, 2022, 17(6): 362-367. DOI: 10.3969/j.issn.1673-6214.2022.06.002
    Citation: LIU Zhi-qiang, GONG Ting-kai. Fault Diagnosis of Rolling Bearing Based on Improved Mathematical Morphology[J]. Failure Analysis and Prevention, 2022, 17(6): 362-367. DOI: 10.3969/j.issn.1673-6214.2022.06.002

    基于改进形态学的滚动轴承故障诊断研究

    Fault Diagnosis of Rolling Bearing Based on Improved Mathematical Morphology

    • 摘要: 针对滚动轴承的微弱故障特征提取,提出了基于特征幅值能量参数(FAEI)和自相关能量比(AER)的改进数学形态方法。首先使用7种形态算子对信号进行形态处理,以FAEI作为最优算子的选取依据,然后借助AER准则自适应地确定扁平结构元素的长度参数。通过轴承故障实验可知,AER准则能够选出最佳结构元素长度,结合形态算子对故障信号进行最优形态滤波。结果表明:该方法能够提取出噪声背景下的冲击脉冲信号,实现轴承微弱故障特征提取。与基于峭度的形态算法对比,改进方法使故障检测中的特征频率幅值提升了1倍。

       

      Abstract: Aiming at weak fault features extraction of rolling bearing, an improved mathematical morphology method based on feature amplitude energy index (FAEI) and autocorrelation energy ratio (AER) was proposed. Firstly, seven morphological operators were used to process the signal, and the optimal operator is selected based on FAEI. Then, the length parameters of flat structure element were adaptively determined using AER criterion. The bearing fault experiments show that AER criterion can select the optimal length of structural elements, and combine the morphological operator to perform optimal morphological filter for fault signals. The results show that the proposed method can extract impact pulse signals in a noisy backgroud, and accomplish weak features extraction of bearing fault. Compared with the morphological method based on kurtosis, the improved method makes the characteristic frequency amplitude increase by 100% in fault detection.

       

    /

    返回文章
    返回