刘好斌, 杨丰玉, 杨志勇, 张佗, 洪贤涛. 基于YoLov5的轴承端面表面缺陷检测方法[J]. 失效分析与预防, 2021, 16(6): 392-397. DOI: 10.3969/j.issn.1673-6214.2021.06.005
    引用本文: 刘好斌, 杨丰玉, 杨志勇, 张佗, 洪贤涛. 基于YoLov5的轴承端面表面缺陷检测方法[J]. 失效分析与预防, 2021, 16(6): 392-397. DOI: 10.3969/j.issn.1673-6214.2021.06.005
    LIU Hao-bin, YANG Feng-yu, YANG Zhi-yong, ZHANG Tuo, HONG Xian-tao. Detection Method of Bearing End Surface Defects Based on YoLov5[J]. Failure Analysis and Prevention, 2021, 16(6): 392-397. DOI: 10.3969/j.issn.1673-6214.2021.06.005
    Citation: LIU Hao-bin, YANG Feng-yu, YANG Zhi-yong, ZHANG Tuo, HONG Xian-tao. Detection Method of Bearing End Surface Defects Based on YoLov5[J]. Failure Analysis and Prevention, 2021, 16(6): 392-397. DOI: 10.3969/j.issn.1673-6214.2021.06.005

    基于YoLov5的轴承端面表面缺陷检测方法

    Detection Method of Bearing End Surface Defects Based on YoLov5

    • 摘要: 针对工业生产中轴承端面表面缺陷检测采用人工目视检测方法存在检测精度低、可靠性差等问题,提出一种基于YoLov5的轴承端面表面缺陷检测方法。首先,为了克服轴承端面表面缺陷样本数据不足问题,提出一种联合Mosaic与Copy-Pasting策略的数据增强方法对样本进行扩充,然后利用YoLov5具有较好的目标检测性能,基于YoLov5模型构建轴承端面缺陷检测模型,实现轴承端面表面缺陷检测。采用工业现场采集的轴承端面表面缺陷图像数据集进行测试实验,结果表明该检测方法可达到94.7%的检测精度。

       

      Abstract: A detection method based on Yolov5 for identifying suface defect on bearing end was proposed to address the problems like low detection accuracy and poor reliability when using manual visual inspection approach. Firstly, in order to ensure there are sufficient sample data of bearing end surface defects, we present a data enhancement method by combining Mosaic and Copy-Pasting strategies. Then, on the strength of the superior target detection performance using YoLov5, a model was built based on YoLov5s. The performance of this method was assessed by employing image data of defects on bearing end surfaces collected in industrial field, which detection accuracy is high up to 94.7%.

       

    /

    返回文章
    返回